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a b s t r a c t

Residential geothermal heating systems have been developed over the past few decades as an alternative
to fossil-fuel based heating. Through mathematical modeling the relationship between the operating
parameters of the heat pump and the piping length of the geothermal system, which is directly correlated
to the cost of the system is investigated. The effect of Taylor dispersion of heat in the fluid which is not yet
addressed in the literature with respect to geothermal systems is included. A model of a simple config-
uration of a single pipe surrounded concentrically by grout and then by soil is considered, where the soil
region has a constant ambient temperature. The conduction between the two regions is modeled with a
classical thermal resistance. Taylor dispersion effects are significant at higher Peclet numbers associated
with this system, and Taylor dispersion in the fluid and thermostat frequency dictate the minimum tub-
ing length needed for successful operation in an insulated subsystem. We consider both steady state and
transient (cyclic operation) analyses and find that the axial dispersion increases linearly in the cycle rate
for large flow rates. We find that the estimated tubing length for complete energy transport is increased
when Taylor dispersion is included, but that this effect can be mitigated with an appropriate choice of the
borehole radius.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Although the promise of environmentally friendly, low-cost en-
ergy harnessing for heating and cooling of residential properties
has been known for nearly 30 years, the adoption of the technology
in the United States has been slow. These geothermal systems, also
known as ground-coupled heat pumps, consist of a field of vertical
boreholes in the ground with pipes carrying a heat transfer fluid
into the earth to gain access to the stable year-round temperatures
underground. The fluid is pumped back to the residential unit to be
used for heating or cooling depending on the season. A significant
portion of the cost for ground-coupled heat pump systems is in the
installation of the large networks of piping to harness the geother-
mal energy. These installation costs are currently cost-prohibitive,
with a typical return-time on investment on the order of 8–10
years. One means to improve the economic competitiveness of
these systems is to reduce the installation footprint. Our focus in
this research program is to develop mathematical models to quan-
tify how the length of the piping is related to the operational
parameters of the system. The model developed in this work in-
cludes both the effect of cycling (turning the fluid flow on or off
in response to the heating or cooling load of the residence) and
ll rights reserved.
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the effect of axial heat transport, by means of advection and Taylor
dispersion, in the pipes.

The main design criteria for these heating systems is the effec-
tive power that can be obtained from the fluid heated as it flows
through the tubing.2 The power rating of these systems can be esti-
mated by determining the change in rate of thermal energy of the
fluid entering the system from the residence and leaving the
system

Power ¼ qwcwU�ApDT;

where qw is the density of the fluid, cw is the specific heat of the
fluid, U� is the characteristic fluid velocity, Ap is the pipe’s cross-sec-
tional area, and DT is the temperature change. For a given fluid, such
as water or ethylene glycol, flow rate and power rating requirement,
the required length of pipe needed for the system to function prop-
erly is determined from the unknown temperature variation in the
axial direction. However, the temperature profile in the fluid is nec-
essarily coupled to the thermal behavior in the soil from which the
energy is transferred. In order to fully understand how these sys-
tems work, a requirement for design optimization, the temperature
profile in both the soil and the fluid need to be solved simulta-
neously. This is a difficult modeling task, so it is no surprise that
some simplifications in the modeling have been attempted in order
to understand different aspects of the system.
2
 We focus in this work on closed-loop systems.
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Nomenclature

D dimensionless axial diffusion coefficient
H dimensionless heat transfer coefficient
L dimensional characteristic axial length
Nu scaled Nusselt number, L2h=ðakgÞ
P period of thermostat oscillation (on and off cycles)
Pe Peclet number, U�a=aw

R radial extent of grout region
T temperature
U characteristic axial fluid velocity
a tubing radius
c specific heat (J/kg K)
h heat transfer coefficient
k thermal conductivity
‘ dimensionless axial characteristic length scale
r radial coordinate
t time
u axial fluid velocity
x axial coordinate
v thermal front velocity
y moving frame of reference, x� v Pet

Greek symbols
a thermal diffusivity
d relative temporal period of oscillation compared to

characteristic time-scale
� aspect ratio, a=L
j wavenumber of axial temperature profile
g dimensionless thermostat cycle rate

q density
r spatial exponential growth rate (steady-state solutions)
s slow-time, �t
h dominant grout temperature
�h correction to radial average temperature
n similarity variable, y=2

ffiffiffiffiffiffi
Dt
p

Subscripts
F Fourier-law diffusion
Tw Taylor dispersion effect from water
Tg Taylor dispersion effect from grout layer
0;1; . . . correction of quantity to Oð�0;1;...Þ
a ambient
eff effective quantity (time-averaged)
g grout quantity
i inlet
r @=@r
s steady
t @=@t
u unsteady
w water quantity
x @=@x
s @=@s

Superscripts
� dimensional quantity
(1) water quantity
(2) grout quantity

A. Ortan et al. / International Journal of Heat and Mass Transfer 52 (2009) 5072–5080 5073
Analytical approaches to these systems have focused on the
thermal behavior of the soil in the cross-section, with the assump-
tion that the temperature profile in the fluid is known. The sim-
plest model used is an adaption of the Kelvin line-source model
[1]. This model assumes that a radial heat flux is known from the
tubing which is proportional to the temperature difference be-
tween the fluid temperature and the soil temperature. To model
axial heat transport, the cylinder source model has been applied
[2] (a brief and clear review of this models is presented in [3]). This
model couples the heat flow between cross-sectional planes of the
line-source model with a prescribed thermal resistance [4–6]. Fur-
ther, a radial thermal resistance is used to decouple the local ther-
mal behavior from the far-field behavior. All of these attempts have
not investigated how the advective heat transport in the fluid af-
fects the axial heat flow in the soil in a direct, physically funda-
mental way. A fundamental approach does not rely on a
phenomenologically-based choice for an axial thermal resistance,
which then must be modified with a new series of experiments
for each new system.

There has been recent interest [3] in developing transient
models that can provide better analyses of the short time behavior
of the ground heat exchanger (GHE). Dobson [7] showed that
cycling the flow (with an on-time on the order of minutes) can
improve the efficiency of the system. The development of better
transient models will enable better simulation of geothermal sys-
tems and improve the optimization of geothermal designs. We
are interested in finding a mathematical description, based on
the fundamental equations of heat transfer in continuous media,
of the near and far-field behavior of the system in order to optimize
their design. In this work, we consider the local behavior near the
tubing, and include the effect of Taylor dispersion of heat in the
tubing and the grout for the simple case of a single pipe within a
borehole. Although we assume knowledge of the far-field temper-
ature profile in this work, a subsequent paper in preparation
addresses how this local temperature profile is coupled to the
far-field distribution over long times.

In order to better understand the dominant mechanisms of the
local system, we note that there are two time-scales of interest.
The first corresponds to the thermal transport time due to conduc-
tion for heat to diffuse through soil, which is on the order of hours.
The second time scale is the typical cycle time needed to maintain
a residence at a prescribed temperature, which is on the order of
minutes. These time scales can be represented mathematically by

conduction time ¼ a2

ag
; cycle time ¼ a

U�
;

where a is the radius of the pipe and ag is the thermal diffusivity of
the grout. The ratio of these time-scales

cycle time
conduction time

¼ aag

a2U�
¼ a

Pe
� 1;

where a ¼ ag=aw is the ratio of the thermal diffusivities of the grout
to the water and Pe ¼ aU�=aw is the Peclet number of the fluid flow.
Since a ¼ Oð1Þ, this suggests that we are interested in the case for
large Peclet numbers.

There is a classical result from solutal diffusion in laminar fluid
flows found by Taylor [8,9], in which he found an effective diffu-
sion coefficient for the concentration C in a solvent

@C
@t
¼ 1þ Pe2

192

" #
@2C
@y2 ;

where time t is on the diffusive time-scale and y is a frame of refer-
ence moving with the average fluid velocity. The first term in the
effective diffusion coefficient represents Fickian diffusion, whose
relative importance decreases with increasing Peclet number. The
second term, however, grows quadratically with increasing Peclet
number, and this term is called Taylor dispersion. Further, Aris
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[10], through an analysis of the concentration distribution, demon-
strated that Taylor’s analysis is valid for all Peclet numbers, that is,
beyond the transition from laminar to turbulent flow. The distribu-
tion of solute tends to a normal distribution, whose variance is de-
scribed by the diffusion coefficient above, and other moments are
shown to be negligible in comparison. The analogous effect in geo-
thermal heating has not yet been addressed, and we focus on its
implications in our work.

In Section 2, we derive the effective heat transfer equations for a
simple cycling problem of a single pipe of fluid, surrounded by a
grout with different thermal behaviors in the local and far-field re-
gions. The thermal conductivity between these regions is assumed
to be small compared to the times of interest here (1–2 weeks). In
Section 3, we summarize how the characteristic length scale of the
axial temperature dependence varies with the material properties
of the system and the Peclet number. Similarity solutions are found
for the steady flow problem and effective temperature equations
are found for the unsteady problem. We note that the minimum
length needed of tubing for an effective system depends linearly
on the cycle rate of the thermostat used in the residence. We state
our conclusions in Section 4, and make recommendations based on
this model.

2. Problem description

Consider a pipe of radius a which is encircled concentrically by
a ring of grout, with an outer radius of R� as shown in Fig. 1(a). A
heat-exchanging fluid, such as water, flows through the pipe from
the inlet at x� ¼ 0 with a prescribed inlet temperature Ti. The
length of this system is long compared to the pipe radius, and
we assume that changes in temperature profile in the liquid vary
on some length scale L� a. This length scale is characterized by
an appreciable length such that the heat flux qin is comparable to
the power demands of the residence. A cartoon is shown in
Fig. 1(b). Surrounding this system is soil, whose ambient tempera-
ture Ta is assumed to be constant over the short time-scales under
consideration. The main function of residential geothermal heating
systems is to leverage the difference between the inlet fluid tem-
perature to the ambient soil temperature in order to perform the
heating or cooling of the residence. For simplicity, we assume that
the fluid flow in the pipe is a laminar Poiseuille flow of the form

u�ðr�Þ ¼ U� 1� r�
a

� �2
h i

\on";

0 \off";

(

Fig. 1. (a) Problem configuration. (b) Heat exchanger balance: length
where U� is the characteristic fluid flow velocity scale. ‘‘on” refers to
that time when the pump is running, as commanded by the resi-
dence thermostat.

The energy equation within the fluid, assuming all dependence
in the azimuthal direction is ignored,

Tð1Þt� þ u�ðr�ÞTð1Þx� ¼ aw
1
r�

r�Tð1Þr�

� �
r�
þ Tð1Þx�x�

� �
; 0 < r� < a; ð1Þ

where aw is the thermal diffusivity of the water. In the grout layer,
the heat equation is given by

Tð2Þt� ¼ ag
1
r�

r�Tð2Þr�

� �
r�
þ Tð2Þx�x�

� �
; a < r� < R�; ð2Þ

where ag is the thermal diffusivity of the grout (see Table 1).
In the radial direction, we assume that no normal flux occurs

along the centerline r� ¼ 0, that there is perfect thermal contact
along r� ¼ a, and that the normal heat-flux along the grout-soil
boundary is balanced by Newton’s law of cooling

r�
@Tð1Þ

@r�
! 0; r� ! 0; ð3Þ

Tð1Þ ¼ Tð2Þ; r� ¼ a; ð4Þ

kw
@Tð1Þ

@r�
¼ kg

@T ð2Þ

@r�
; r� ¼ a; ð5Þ

� kg
@Tð2Þ

@r�
¼ hðTð2Þ � TaÞ; r� ¼ R�; ð6Þ

where kw is the thermal conductivity of the water, kg is the ther-
mal conductivity of the grout, and h is the heat transfer coefficient
between the grout and soil regions. Eq. (6) models the relatively
slow rate of heat transport within the soil. We assume the heat
transfer between these two regions to be small, but nonzero.
The assumption that the soil temperature does not vary in time
or in space from its ambient temperature is an idealization over
the short time-scales of interest (days), but our interest here is
how the operating parameters determine the length required to
transfer the required heat to the fluid from the soil. From [11],
the heat transfer between these two regions could provide a
length scale of interest.

We scale the radial coordinate on the pipe radius a, the axial
direction on the characteristic length L, time on the diffusive time
scale, and temperature on the temperature difference DT ¼ Ti � Ta.
Using Ta as a reference temperature within the soil layer and the
water, these scales are written as
scale L depends on the rate of heat transport within the soil h.



Table 1
Characteristic dimensional quantities residential geothermal heat pump systems, and the corresponding range for dimensionless parameters.

Dimensional quantities Dimensionless quantities

Fluid velocity (m/s) 0.3–5 Reynolds number 3000–100,000
Fluid thermal conductivity (W/m K) 0.6
Fluid thermal diffusivity ðm2=sÞ 1:44	 10�7 Pe 20,000–700,000
Grout thermal conductivity (W/m K) 5.19
Grout thermal diffusivity ðm2=sÞ 2:91	 10�6

Grout-soil heat transfer coefficient ðW=m2 KÞ 10�7 ah=kg 10�10

Pipe radius (m) 0.01–0.02
Borehole radius (m) 0.05–0.1 R 5
Ambient soil temperature (�C) 10–16

A. Ortan et al. / International Journal of Heat and Mass Transfer 52 (2009) 5072–5080 5075
½x��¼L; ½r��¼ ½R��¼a; ½t��¼La=aw;
T ðiÞ �Ta

Ti�Ta
!TðiÞ; i¼1;2; ð7Þ

and the energy equations (1) and (2), along with the radial bound-
ary conditions, become

� Tð1Þt þPeð1� r2ÞTð1Þx

n o
¼1

r
rTð1Þr

� �
r
þ�2T ð1Þxx ; 0< r<1 \on"; ð8Þ

� Tð1Þt

n o
¼1

r
rTð1Þr

� �
r
þ�2Tð1Þxx ; 0< r<1 \off"; ð9Þ

�T ð2Þt ¼a
1
r

rT ð2Þr

� �
r
þ�2Tð2Þxx

� �
; 1< r<R; ð10Þ

r
@Tð1Þ

@r
!0; r!0; ð11Þ

Tð1Þ ¼ Tð2Þ; r¼1; ð12Þ
@Tð1Þ

@r
¼ k

@Tð2Þ

@r
; r¼1; ð13Þ

@Tð2Þ

@r
¼��2 NuTð2Þ; r¼R; ð14Þ

where � ¼ a=L� 1 is the aspect ratio of the pipe, Pe ¼ Uoa=aw is the
Peclet number of the fluid, a ¼ ag=aw is the thermal diffusivity ratio,
and k ¼ kg=kw is the thermal conductivity ratio. Note that the heat
transfer between the soil and the grout (14) is small due to the long
characteristic time-scale of heat transport within the soil compared
to that of the fluid flow. From Table 1, we note that actual Nusselt
number ah=kg between the soil and the grout is approximately
10�10 � �2. We define a scaled Nusselt number Nu ¼ L2h=ðakgÞ ¼
Oð1Þ, which is unit-order compared to �, as its multiple. Note that
(9) can be obtained from (8) when Pe ¼ 0.

We approach the solution to this problem using a regular per-
turbation expansion (see [12]) in powers of the small aspect ratio
� for the ‘‘on” case (8). Using the expansion T ð1Þ ¼ Tð1Þ0 þ �T

ð1Þ
1 þ � � �

and introducing a second time-scale s ¼ �t,

0 ¼ 1
r
@

@r
r
@Tð1Þ0

@r

 !

þ � 1
r
@

@r
r
@Tð1Þ1

@r

 !
� @Tð1Þ0

@t
þ Peð1� r2Þ @Tð1Þ0

@x

 !( )

þ �2 1
r
@

@r
r
@Tð1Þ2

@r

 !
þ @

2Tð1Þ0

@x2 �
@Tð1Þ1

@t
þ @Tð1Þ0

@s
þ Peð1� r2Þ @Tð1Þ1

@x

 !( )

þ � � �
ð15Þ

Similarly for the grout temperature, Tð2Þ ¼ T ð2Þ0 þ �T
ð2Þ
1 þ � � �,

0 ¼ a
1
r
@

@r
r
@T ð2Þ0

@r

 !
þ � a

1
r
@

@r
r
@Tð2Þ1

@r

 !
� @Tð2Þ0

@t

( )

þ �2 a
1
r
@

@r
r
@Tð2Þ2

@r

 !
þ @

2Tð2Þ0

@x2 �
@Tð2Þ1

@t
þ @Tð2Þ0

@s

 !( )
þ � � � ð16Þ
From the Oð1Þ terms and using the boundary condition (12), it
follows that Tð1Þ0 and Tð2Þ0 are independent of r, so they can be de-
noted by T ð1Þ0 ðx; t; sÞ ¼ Tð2Þ0 ðx; t; sÞ ¼ h0ðx; t; sÞ. This solution is in
the nullspace of the operator @rðr@rÞ, and it corresponds to the por-
tion of the solution with zero radial heat flux. This mode is always
present at each stage of the analysis, and to close the problem
mathematically, we assume that ho corresponds to the grout tem-
perature at all orders in �.

At Oð�Þ, we find the following problem to solve for Tð1Þ1 ; T ð2Þ1 :

1
r
@

@r
r
@Tð1Þ1

@r

 !
¼ @h0

@t
þ Peð1� r2Þ @h0

@x

	 

; 0 < r < 1; ð17Þ

a
r
@

@r
r
@Tð2Þ1

@r

( )
¼ @ho

@t
; 1 < r < R; ð18Þ

subject to the boundary conditions

r
@Tð1Þ1

@r
! 0 as r ! 0; ð19Þ

@T ð1Þ1

@r
¼ k

@Tð2Þ1

@r
at r ¼ 1; ð20Þ

Tð1Þ1 ¼ Tð2Þ1 at r ¼ 1; ð21Þ
@T ð2Þ1

@r
¼ 0 at r ¼ R: ð22Þ

Solving (17) using (19) results in the solution for the first-order
temperature correction, or the deviation of the fluid temperature
from the local average temperature hoðx; tÞ, is given by

Tð1Þ1 ¼
r2

4
@h0

@t
þ Pe

@h0

@x

	 

� Pe

r4

16
@h0

@x

� �
þ �hð1Þ1 ðx; t; sÞ: ð23Þ

Similarly for the deviation of the grout temperature from the local
average temperature hoðx; tÞ; Tð2Þ1 , using (18) with (22) gives the fol-
lowing solution:

Tð2Þ1 ¼
1
a
@h0

@t
r2

4
� R2

2
log r

 !
þ �hð2Þ1 ðx; t; sÞ: ð24Þ

Applying the boundary condition (20) results in a compatibility
condition for ho

@h0

@t
þ v Pe

@h0

@x
¼ 0; ð25Þ

where

v ¼ 1

2 1þ k
a ½R

2 � 1�
� �

is the speed at which leading-order temperature ho propagates in
the axial direction in the grout. Note that this depends only on the
material properties of the fluid and the grout, and relative cross-
sectional areas of each. Thus h0 is constant along lines where
y ¼ x� ðv PeÞt is constant, so that h0 ¼ h0ðy; sÞ. Going back to find-
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ing T ð1Þ1 and Tð2Þ1 from Eqs. (23) and (24) in this moving frame, we
obtain

Tð1Þ1 ¼ Pe ð1� vÞ r
2

4
� r4

16

� �
@h0

@y
þ �hð1Þ1 ðy; sÞ; ð26Þ

Tð2Þ1 ¼ v Pe
a

R2

2
log r � r2

4

( )
@h0

@y
þ �hð2Þ1 ðy; sÞ; ð27Þ

where we assumed that �hð1Þ1 ðx; t; sÞ ¼ �hð1Þ1 ðy; sÞ and �hð2Þ1 ðx; t; sÞ ¼
�hð2Þ1 ðy; sÞ. Since we defined ho as the magnitude of the zero-radial-
flux mode in the grout layer, �hð2Þ1 ¼ 0, and using (14) to equate tem-
peratures at r ¼ 1, we find that

�hð1Þ1 ¼ �
Pe
4a

vð1� aÞ þ 3a
4

� �
@ho

@y
:

Now, turning to the Oð�2Þ terms in Eqs. (15) and (16),

1
r
@

@r
r
@Tð1Þ2

@r

 !
¼ � @

2h0

@y2 þ
@Tð1Þ1

@t
þ @h0

@s
þ Peð1� r2Þ @Tð1Þ1

@x

 !
; ð28Þ

a
r
@

@r
r
@T ð2Þ2

@r

 !
¼ �a

@2h0

@y2 þ
@Tð2Þ1

@t
þ @h0

@s

 !
: ð29Þ

The details of this analysis can be found in the Appendix A. To
connect this result to observations, we convert back to the ðx; tÞ
framework (letting h ¼ ho for notational convenience) and our
equation for the averaged local temperature in the liquid and soil
when the thermostat is on is given by

ht þ v Pehx ¼ �ðDhxx � HhÞ: ð30Þ

Note that the diffusion coefficient D and the effective heat transfer
coefficient H are given by

D ¼ DF þ DT Pe2; ð31Þ

H ¼ 2kNu

1þ k
a ðR

2 � 1Þ
; ð32Þ

where DF is the Fourier diffusion component and DT is the compo-
nent due to Taylor dispersion.

The effect of the ‘‘off” cycle of the thermostat is that there is no
fluid flow when the system does not demand power, and hence
Pe ¼ 0. Further, we assume that no axial heat flux moves to or from
the system at x ¼ 0, and we let hx ¼ 0 along x ¼ 0 when the system
is off. In summary, the unsteady problem under consideration can
be written as‘‘on”:

ht þ Pevhx ¼ �½Dhxx � Hh�; ð33Þ
x ¼ 0 : h ¼ 1; ð34Þ
x!1 : h ¼ 0; ð35Þ

‘‘off”

ht ¼ �½DFhxx � Hh�; ð36Þ
x ¼ 0 : hx ¼ 0; ð37Þ
x!1 : h ¼ 0: ð38Þ

We consider a time-harmonic solution to this problem, where P is
the period of oscillation, and the cycle rate of the thermostat is gi-
ven by g, or the percentage of time that the system is on. Both P and
g are measures of the energy efficiency of the residence.

3. Results

3.1. Steady operation Pe–0

As an introduction into the unsteady axial temperature varia-
tions from this model, we consider the problem (33) with bound-
ary conditions (34) and (35). If we assume that the temperature
has achieved a steady-state solution, then we can write (33) as
an ordinary differential equation in x

�½Dhxx � Hh� � v Pehx ¼ 0: ð39Þ

The solution to (39) is of the form h ¼ A expðrxÞ, where r is the spa-
tial growth rate of the temperature. From the characteristic equa-
tion of (39), h has two spatial exponential growth rates r

defined as

r
 ¼
v Pe
2�D

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2DH

ðv PeÞ2

s( )
: ð40Þ

By (35), the component with the positive growth rate rþ must be
zero, which dictates that the only growth rate of interest is given
by r�.

From (40), we can define the characteristic length ‘s ¼ �1=r� as

‘s ¼
v Pe
2�H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2HD

v2Pe2

s
þ 1

8<
:

9=
;: ð41Þ

Note that this length scale increases linearly with Pe as Pe!1. To
test this theory, we implement a numerical simulation of (33) with
(34) and (35) over a domain scaled with v Pe. With this scaling, the
discretization matrices of the terms in (33) are well conditioned,
and a standard Crank–Nicolson scheme is used (see [13]). Fig. 2
shows the evolution of the time simulation for the parameter values
R ¼ 5; Pe ¼ 28;000. The solid (blue) curve corresponds to the pre-
dicted exponentially decaying steady-state solution given by (40).
Note that the temperature front propagates more slowly as time
progresses, and the temperature behind the front converges to the
expected steady-state value. We have also plotted the correspond-
ing temperature disturbances from h; T1, in the ðx; rÞ domain. Notice
that there is a local hot spot (yellow/light) in the correction in the
fluid and a corresponding cool spot in the grout layer that propa-
gates with the temperature front, where the gradient of h is
maximum.

The front speed of this solution can be understood directly in
terms of a similarity variable. The transformation

y ¼ x� v Pet h ¼ e��Htf ðy; tÞ

applied to (33) results in the standard heat equation for f:

ft ¼ �Dfyy:

The heat equation exhibits similarity solutions in terms of the sim-
ilarity variable n ¼ y=ð2

ffiffiffiffiffiffiffiffi
�Dt
p

Þ. The location of this leading tempera-
ture change along the pipe in x corresponds to a fixed location in n.
Thus the leading front xf ðtÞ can be written as

xf ðtÞ ¼ 2n
ffiffiffiffiffiffiffiffi
�Dt
p

þ v Pet: ð42Þ

We compare (42) with the front speed of the decaying solution
from our simulation over a range of Pe and R in Fig. 3. In all of these
simulations, we normalized the data based on the final data value
at t ¼ 5. For each data point, 10 different simulations were taken
with 3500 < Pe < 35;000. The similarity values are all within
10�7 of the mean value. However, as R is increased, the solution
converges more quickly to the similarity solution. This is consistent
with a > 1 based on the values used in Table 1. From this, we con-
clude that (42) characterizes the propagation of the front.

3.2. Unsteady flows

In residential applications, the fluid flows in the system in
discrete stages. The cycling occurs on the advection time-scale
(minutes) but we are interested in the temperature distribution
on the conduction time scale (hours to days). To understand the
unsteady behavior of (33)–(38), we can apply the technique of
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Fig. 2. (a) Snapshot of the temperature profiles for short times (t ¼ 1 corresponds to nearly 27 h) from initial conditions of hðx; 0Þ ¼ 0. The solid (blue) line corresponds to the
steady-state temperature profile, the dashed (green) line corresponds to t ¼ 1, the dotted (red) curve corresponds to t ¼ 3, and the dashed-dot (cyan) curve corresponds to
t ¼ 5. Here R ¼ 5 and Pe ¼ 28; 000. (b) The contour plot of the temperature correction T1 over the axial and radial interval for t ¼ 1. (c) t ¼ 3, and t ¼ 5. Note that the axial
coordinate in figures (b)–(d) are in units scaled on v Pe, which are significantly longer than the units for the radial dimension. (For interpretation of color mentioned in this
figure legend the reader is referred to the web version of the article.)
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homogenization in the limit of P ! 0. An example of this technique
for microwave heating of laminates can be found in [14]. We define
a second time-scale tp ¼ Oð1=dÞ; d ¼ P � 1 on which h is periodic,
and assume that h ¼ hðx; t; tpÞwhere t; tp are independent variables.
Note that

ht ¼ ht þ
1
d

htp :

For simplicity, assume that ĥ represents a Fourier mode of the solu-
tion h on �1 < x <1. Note that since the system (33)–(38) is a lin-
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Fig. 3. Plot of simulation data in the similarity for from (42) for
3500 < Pe < 35;000, and different radius ratios (10 simulations, each with a
different Pe, per point). The points correspond to R ¼ 2 (asterisk), R ¼ 4 (crosses),
R ¼ 6 (squares). Notice that as R increases, the front converges more quickly to the
similarity solution.
ear system, an appropriate linear combination of these Fourier
modes can be found that corresponds to the solution h. In Fourier
space, the problem can be written as

ĥtp ¼ �d ĥt þ j2�Dþ ijv Peþ �H
� �

ĥðtÞ
n o

; 0 < tp < g; ð43Þ

ĥtp ¼ �d ĥt þ j2�DF þ H
� �

ĥ
n o

; g < tp < 1; ð44Þ

where j is the wavenumber of the temperature distribution h.
Suppose that ĥðtp ¼ 0Þ ¼ ĥo. Then the solution to (43) is given by

ĥ ¼ ĥo þ dtp ĥt þ j2�Dþ ijv Peþ �H
� �

ĥ
h i

; ð45Þ

and similarly for g < tp < 1,

ĥ ¼ ĥo � dðtp � gÞ ht þ j2�Dþ �H
 �

ĥ
h i

� dg ĥt þ j2�Dþ ijv Peþ �H
� �

ĥ
h i

: ð46Þ

Since we have defined h to be periodic on the time-scale tp, this gives
us a restriction on the evolution of h on the longer time-scale t:

ĥt ¼ � ðgÞ j2�Dþ ijv Peþ �H
 �

þ ð1� gÞ j2�DF
 �

þ �H
 �

ĥ; ð47Þ

which can be represented in physical space as

ht þ gv Pehx ¼ �½gDþ ð1� gÞDF �hxx � �Hh: ð48Þ

Note that the form of (48) is exactly the same as that found in
(33). Hence, we can find the characteristic length scale for the un-
steady case as

‘u ¼
v Pe
2�H

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4�2HDeff

ðv PeÞ2

s( )
; ð49Þ

where Deff ¼ gDþ ð1� gÞDF . Thus, in order to minimize the length
of tubing required for the residential geothermal heating system
to function, the heat losses of the residence need to be minimized.
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Fig. 5. Plot of simulated data of (33)–(38) with P ¼ 0:01, and g ¼ 1=8 (red square),
g ¼ 1=4 (cyan cross), and g ¼ 1=2 (blue asterix). A minimum of 10 time steps were
used for the smallest value of g, and each point corresponds to 10 different Pe, as in
Fig. 3.
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One way to measure this length is with respect to the steady
characteristic length ‘s. If we consider their ratio

‘u

‘s
¼

gv Peþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvgPeÞ2 þ 4�2HDeff

q
v Peþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv PeÞ2 þ 4�2HD

q � g for Pe� 1; ð50Þ

we note that the characteristic unsteady axial length scale depends
linearly on the cycle rate of the system for large Peclet numbers.
Further, the limit g! 0 results in a value which is nonzero. While
this latter result shows that there needs to be a lower bound for
the length of the tubing in order for the system to be functional,
it is not helpful to answer design questions. The effect of the unstea-
dy flow is shown in Fig. 4, where analogous snapshots of the tem-
perature profiles from Fig. 2 are displayed with g ¼ 1=2 and
P ¼ 0:01. Note that the length x over which the temperature front
propogates scales on g when compared to the steady case in Fig. 2.

Finally, we consider the similarity form of the unsteady equa-
tion (48) with the computational solution of (33)–(38). Fig. 5
shows the evolution of the front similarity variable for
g ¼ 1=8; g ¼ 1=4, and g ¼ 1=2 for R ¼ 2. In the limit of small cycle
rates, the effective similarity variable formulation for (48) better
represents the evolution of (33)–(38).

4. Conclusions

In this work, we describe the temperature profiles within a
thin-walled tubing of a geothermal heat pump surrounded by a
model soil. We find that the axial dispersion of the heat is signifi-
cant under normal operating conditions, with the effective disper-
sion coefficient increasing with increasing flow rates. This physical
effect in the cylindrical source model, has been modeled phenom-
enologically in the past, in addition to an additional thermal resis-
tance effect separating the local and far-field thermal behavior in
the soil. Our physically fundamental approach for this form of axial
dispersion appears not to have been addressed in the ground
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Fig. 4. (a) Snapshot of the unsteady temperature profiles for short times taken over the
g ¼ 1=2 and P ¼ 0:01, which dimensionally corresponds to an on cycle of about 8 min
significantly longer than the units for the radial dimension.
source heat pump literature, and it appears to be a critical param-
eter in the optimization of these systems. The qualitative nature of
our preliminary results for fluid/grout/soil systems are consistent
with what is found here, but a more quantitative comparison of
different materials using this model will be addressed in a later
work.

We also have found that similarity solutions exist for steady
flow, which is not a surprising result. However, under unsteady
flow conditions, we find that the evolution of the front appears
to be described in terms of this similarity variable. The propagation
speed of the front is well described by the effective thermal front
b

d

advective time-scale. The parameters and notation is the same as in Fig. 2, but here
. Note that the axial coordinate in figures (b)–(d) are in units of v Pe, which are
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Fig. 6. (a) Taylor dispersion coefficient DT as a function of borehole radius R for different values of thermal conductivity ratios k with a ¼ 16. (b) Taylor dispersion coefficient
DT as a function of R for different values of thermal diffusivities a with k ¼ 8.
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velocity and the Peclet number. This description may be sufficient
to help in optimizing the design.

One additional insight from this analysis is how the effective
length of tubing needed for normal operation of the system de-
pends linearly on the efficiency (measured in terms of the cycle
time per period between cycles) of the residence for large Peclet
numbers. This appears not to have been considered in previous
studies of these systems, but we recommend manufacturers of
these systems to perform an energy audit of the residence before
recommending any particular system to consumers.

From this analysis, the effect of Taylor dispersion acts to extend
the required length of pipe for any given heat exchanger. Eq. (41)
gives exactly the length when advection is balanced by radial heat
transport in the limit when D! 0. This effect persists when the
flow is unsteady (see Eq. (49)). Hence, a design goal needed to min-
imize the required length resides in minimizing the Taylor disper-
sion portion of D. From Appendix A, this quantity depends only on
R; k, and a.

Fig. 6 shows the dependence of the Taylor dispersion coefficient
over a range of thermal conductivity ratios k and thermal diffusiv-
ity ratios, and thermal mass ratios a. Fig. 6a shows how the Taylor
dispersion coefficient DT varies over borehole radius R, with a ¼ 16
and different values of k, while Fig. 6b shows DT over R with k ¼ 8
and different values of a. Note that all of these curves have a max-
imum for a particular borehole radius, where the length of the tub-
ing needs to be largest. However, this result demonstrates that the
size of the borehole can be made larger or smaller based on the
material properties of the grout and heat exchange fluid used.

Finally, we note that the current model is limited by the
assumption of an ambient temperature in the soil in the far-field.
This assumption is not valid during the seasonal changes that are
typically found, nor on the time-scales when thermal depletion
of the surrounding environment can take place. However, we note
that from the local solution, we have an inner solution in the radial
direction which describes the axial dependence of the radial heat
flux as a function of r. This behavior can then be used in a matched
asymptotic setting with the solution to the outer problem far from
the borehole to form an effective evolution equation for the local
temperature in the grout h. We perform this extension of our anal-
ysis in an upcoming work [12]. The coupling of the local and far-
field behavior for this simple annular geometry will allow us to
mathematically model different geometries, and to understand
the conditions under which different systems could yield better
performance with lower installation costs.
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Appendix A

Substituting Tð1Þ1 and Tð2Þ1 from Eqs. (26) and (27), and integrat-
ing over their respective radial domains, we find the radial temper-
ature gradient at r ¼ 1 from the fluid and the grout layer to be

r
@Tð1Þ2

@r

 !�����
r¼1

¼1
2
@ho

@s
�1

2
@2ho

@y2 �
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2

	 @
2ho
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�v

	 

þ7a�1
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" #
� Nuho: ð52Þ

Equating the heat flux across r ¼ 1 gives us a compatibility equation
for the mode amplitude ho:

1þk
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� �
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We can write this as hos ¼ Dhoyy � Hho, where D is the effective dif-
fusivity of the medium, H the effective heat transfer coefficient.
These can be written as

D¼DFþðDTf þDTgÞPe2; ð55Þ

DF¼
1þk½R2�1�
1þ k

a½R
2�1�

; ð56Þ

DTf ¼
1

1þ k
a½R

2�1�
1
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þ 11aþ24

48a
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DTg¼
1

1þ k
a½R

2�1�
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R4 logR
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; ð58Þ
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H¼ 2kNu

1þ k
aðR

2�1Þ
h i: ð59Þ

Note that the diffusion coefficient D has two components. The first
component DF corresponds to classical diffusion (Fourier’s law),
which decreases relative to the second component as the Peclet
number increases. Previous analyses of typical geothermal heating
systems neglect this term compared to the heat transfer from the
grout layer to the surrounding soil. However, the second term of
D is proportional to the square of the Peclet number, and corre-
sponds to Taylor dispersion, and cannot be neglected for large Pe
found in application. There are two components to this term, DTf ,
which corresponds to Taylor dispersion within the fluid, and DTg ,
which corresponds to Taylor dispersion between the fluid and the
grout layer. Note that if the grout layer has zero thickness
ðR! 1Þ, then the Taylor dispersion term from this layer vanishes,
and the Taylor dispersion term from the fluid reverts to the classical
Taylor result (since v ! 1=2 in this limit).
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